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Abstract: Artificial intelligence (AI) has become more prevalent in a number of societal fields, most notably the pharmaceutical 

industry. In this review, we focus on how AI is being used in a variety of pharmaceutical industry fields, such as drug discovery 

and development, drug repurposing, increasing pharmaceutical productivity, and clinical trials, among others. This use of AI lessens 

the workload of human workers while also achieving goals quickly. A interesting and expanding field is artificial intelligence (AI). 

Because of the large and growing volume of data, AI techniques are becoming indispensable for the full evaluation of information 

underlying data. AI is being used to accelerate progress and improve decision making in various sectors and disciplines of drug 

discovery and development, including medicinal chemistry, upscaling, molecular and cell biology, pharmacology, 

pharmacokinetics, formulation development, and toxicity. In clinical testing, AI plays a critical role in raising success rates by 

improving trial design (biomarkers, efficacy parameters, dose selection, trial duration), target patient population selection, patient 

stratification, and patient sample evaluation. We also explore crosstalk between AI tools and methodologies, current issues and 

solutions, and the future of AI in the pharma industry. 

Index Terms -  Artificial Intelligence (AI), Pharmaceutical, Development. 

1. Introduction 

In the pharmaceutical market, data digitization has increased dramatically in recent years. However, the challenge of gathering, 

evaluating, and utilizing knowledge to solve complicated clinical problems arises with digitalization [1]. This encourages the 

adoption of AI, which can manage massive amounts of data with greater automation [2]. AI is a technology-based system that use 

a variety of advanced tools and networks to simulate human intelligence. At the same time, it does not threaten to totally replace 

human physical presence [3][4]. AI employs systems and software that can read and learn from input data in order to make 

independent judgments for achieving certain goals. As stated in this review, its applications in the pharmaceutical industry are 

constantly being expanded. According to the McKinsey Global Institute, rapid breakthroughs in AI-guided automation are likely to 

totally transform society's work culture [5][6]. 

2. Artificial Intelligence In Life Cycle Product 

AI can be imagined assisting in the development of a pharmaceutical product from the bench to the bedside because it can aid in 

rational drug design [7], decision making, determining the right therapy for a patient, including personalised medicines, and 

managing clinical data generated and using it for future drug development [8]. 

E-VAI is an analytical and decision-making AI platform developed by Eularis that uses machine learning (ML) algorithms and an 

easy-to-use user interface to create analytical roadmaps based on competitors, key stakeholders, and currently held market share to 

predict key drivers in pharmaceutical sales [9], allowing marketing executives to allocate resources for maximum market share 

gain, reversing poor sales, and anticipating where to make investments. Figure 1 summaries many AI uses in drug research and 

development. 
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figure no 1 : artificial intelligence (ai) is being used in various areas of the pharmaceutical sector, ranging from drug discovery to 

pharmaceutical product management. 

 

3. Artificial Intelligence In Drug Discovery 

The enormous chemical space, which contains >1060 compounds, encourages the synthesis of a huge number of pharmacological 

molecules [10]. The lack of new technology, on the other hand, delays the medication development process, making it a time-

consuming and expensive task that can be handled by applying AI [11]. AI can identify hit and lead compounds, as well as provide 

faster validation of the drug target and optimization of drug structure design [10]. [12] Figure 2 illustrates many AI uses in drug 

discovery. 

figure no 2: artificial intelligence (ai) in drug discovery ai has the potential to help in several areas of drug discovery, including 

drug design, chemical synthesis, drug screening, polypharmacology, and drug repurposing. 

Despite its benefits, AI has substantial data difficulties, such as data volume, growth, diversity, and uncertainty. Traditional ML 

algorithms may be unable to deal with the data sets accessible for drug discovery in pharmaceutical organizations, which might 

include millions of molecules. A computational model based on the quantitative structure-activity relationship (QSAR) can swiftly 

predict a large number of chemicals or simple physicochemical characteristics like log P or log D. However, these models fall short 

of predicting complicated biological features such as chemical activity and side effects. Furthermore, QSAR-based models 

encounter issues such as short training sets, experimental data error in training sets, and a lack of experimental validations. To 

address these issues, recently emerging AI tools, such as Deep learning (DL) and relevant modelling studies, can be used to evaluate 

the safety and efficacy of medicinal compounds using big data modelling and analysis. Merck sponsored a QSAR ML competition 

in 2012 to investigate the benefits of DL in the drug discovery process in the pharmaceutical business. For 15 drug candidate 

absorption, distribution, metabolism, excretion, and toxicity (ADMET) data sets, DL models outperformed classic ML approaches 

in terms of predictability. [13] [14]. 
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By depicting the distributions of molecules and their attributes, the virtual chemical space resembles a geographical map of 

molecules. The goal behind the chemical space visualization is to collect positional information about molecules inside the space 

in order to search for bioactive compounds; hence, virtual screening (VS) aids in the selection of relevant molecules for subsequent 

testing. Several chemical spaces, including PubChem, ChemBank, DrugBank, and ChemDB, are open to the public. 

Numerous in silico methods for virtual screening compounds from virtual chemical spaces, as well as structure and ligand-based 

methodologies, allow superior profile analysis, faster elimination of nonlead compounds, and therapeutic molecule selection at a 

lower cost [10]. To pick a lead ingredient, drug design techniques such as coulomb matrices and molecular fingerprint recognition 

examine the physical, chemical, and toxicological profiles [15]. 

To forecast the intended chemical structure of a substance, several characteristics such as predictive models, molecule similarity, 

the molecule generation process, and the usage of in silico methodologies can be used [12][16]. Pereira et al. presented DeepVS, a 

new docking method for 40 receptors and 2950 ligands that demonstrated remarkable performance when 95000 decoys were tested 

against these receptors [17]. A multi-objective automated replacement algorithm was used in another study to enhance the potency 

profile of a cyclin-dependent kinase-2 inhibitor by examining its form similarity, biochemical activity, and physicochemical features 

[18]. 

The use of QSAR modelling tools has led to the development of AI-based QSAR techniques, including decision trees, support 

vector machines, random forests, and linear discriminant analysis (LDA), which can be used to accelerate QSAR analysis 

[19][20][21]. When King et al. evaluated the capacity of six AI algorithms to rank anonymous substances in terms of biological 

activity with that of conventional techniques [22], they discovered a minimal statistical difference. 

4. Artificial Intelligence In Drug Screening 

4.1 Prediction Of Physicochemical Properties  

When developing a new medicine, physicochemical characteristics including solubility, partition coefficient (logP), degree of 

ionization, and intrinsic permeability of the drug must be considered because they have an indirect impact on its pharmacokinetics 

and target receptor family [23]. It is possible to predict physicochemical properties using a variety of AI-based methods. For 

example, ML uses large data sets created during earlier compound optimization to train the software [24]. Molecule descriptors, 

such as SMILES strings, potential energy readings, electron density around the molecule, and coordinates of atoms in 3D, are used 

in drug design algorithms to produce feasible molecules via DNN and thus forecast its properties [25]. 

The Estimation Program Interface (EPI) Suite is a quantitative structure-property relationship (QSPR) process developed by Zang 

et al. to ascertain the six physicochemical properties of environmental chemicals received from the Environmental Protection 

Agency (EPA) [24]. The lipophilicity and solubility of different substances have been predicted using neural networks based on the 

ADMET predictor and ALGOPS software [26]. The solubility of molecules has been predicted using DL techniques like undirected 

graph recursive neural networks and graph-based convolutional neural networks (CVNN) [27]. 

The acid dissociation constant of substances has been predicted using ANN-based models, graph kernels, and kernel ridge-based 

models in a number of cases [24][28]. Similar to this, data on cellular permeability of a wide range of molecules has been generated 

using cell lines, such as Madin-Darby canine kidney cells and human colon adenocarcinoma (Caco-2) cells, and is then fed to AI-

assisted predictors [23]. 

In order to predict the intestinal absorptivity of 497 compounds, Kumar et al. developed six predictive models, including SVMs, 

ANNs, k-nearest neighbor algorithms, LDAs, probabilistic neural network algorithms, and partial least square (PLS), using 745 

compounds for training. These models took into account parameters such as molecular surface area, molecular mass, total hydrogen 

count, molecular refractivity, molecular volume, logP, total polar surface area, the sum of E- states indices, solubility index (log S), 

and rotatable bonds [29]. In a similar vein, in silico models based on RF and DNN were created to estimate human intestinal 

absorption of various chemical substances [30]. As a result, AI plays a crucial role in the creation of a medicine by predicting both 

the needed bioactivity and the intended physicochemical qualities. 

4.2 Prediction Of Bioactivity  

The affinity of drug molecules for the target protein or receptor determines their efficacy. Drug molecules that do not bind with or 

have affinity for the targeted protein will not be able to provide the therapeutic response. In rare cases, therapeutic compounds may 

interact with unwanted proteins or receptors, resulting in toxicity. As a result, drug target binding affinity (DTBA) is essential for 

predicting drug-target interactions. AI-based approaches can calculate a drug's binding affinity by taking into account the traits or 

similarities between the drug and its target. To determine the feature vectors, feature-based interactions recognize the chemical 

moieties of the medication and the target. In contrast, similarity-based interaction takes into account the similarity between 

medication and target, and it is assumed that similar compounds will interact with the same targets [31].  

For predicting drug-target interactions, web application such as ChemMapper and the similarity ensemble technique (SEA) are 

available [32]. Many ML and DL-based techniques, including as KronRLS, SimBoost, DeepDTA, and PADME, have been utilized 

to determine DTBA. To determine DTBA, ML-based techniques such as Kronecker-regularized least squares (KronRLS) analyze 

the similarity between medicines and protein molecules. SimBoost, on the other hand, uses regression trees to predict DTBA and 

takes into account both feature-based and similarity-based interactions. SMILES drug characteristics, ligand maximum common 

substructure (LMCS), extended connectivity fingerprint, or a mix of these can all be evaluated [31].DL approaches have shown 

improved performance compared with ML because they apply network-based methods that do not depend on the availability of the 
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3D protein structure [32]. DeepDTA, PADME, WideDTA, and DeepAffinity are some DL methods used to measure DTBA. 

DeepDTA accepts drug data in the form of SMILES, whereby, the amino acid sequence is entered for protein input data and for the 

1D representation of the drug structure [33]. WideDTA is CVNN DL method that incorporates ligand SMILES (LS), amino acid 

sequences, LMCS, and protein domains and motifs as input data for assessing the binding affinity [34]. 

Deep-Affinity and Protein And Drug Molecule Interaction Prediction (PADME) are techniques comparable to those published 

previously [35]. Deep-Affinity is an interpretable deep learning model that employs both RNN and CNN, as well as unlabeled and 

labelled data. In the structural and physicochemical aspects, it considers the compound in SMILES format and protein 

sequences[36]. PADME is a DL-based platform that predicts drug target interactions using feed-forward neural networks (DTIs). 

It takes as input data the combination of medication and target protein properties and anticipates the intensity of the interaction 

between the two. The SMILES representation and the protein sequence composition (PSC) are used to illustrate the drug and the 

target, respectively [35]. Unsupervised machine learning techniques, such as MANTRA and PREDICT, can be used to forecast the 

therapeutic efficacy of drugs and target proteins of known and unknown pharmaceuticals, which can then be extrapolated to the 

application of drug repurposing and interpreting the therapeutics' molecular mechanism. Using a CMap data set, MANTRA 

classifies substances based on comparable gene expression profiles and clusters those anticipated to have a shared mode of action 

and biological pathway [32]. A drug's bioactivity also contains ADME data. AI-based techniques such as XenoSite, FAME, and 

SMARTCyp are used to determine the drug's sites of metabolism. Additionally, tools like CypRules, MetaSite, MetaPred, 

SMARTCyp, and WhichCyp were utilized to pinpoint individual CYP450 isoforms that control a given drug's metabolism. SVM-

based predictors performed the clearance pathway analysis of 141 authorized medicines with high accuracy [37]. 

4.3 Prediction Of Toxicity  

It is crucial to predict the toxicity of any drug molecule in order to avoid negative effects. The frequent use of cell-based in vitro 

tests as preliminary studies, followed by animal trials to ascertain a compound's toxicity, raises the price of creating new 

medications. A number of web-based applications, such as LimTox, pkCSM, admetSAR, and Toxtree [24], can assist reduce the 

cost. Advanced AI-based techniques examine similarities between compounds or estimate a compound's toxicity based on input 

features. The Tox21 Data Challenge was organized by the National Institutes of Health, the Environmental Protection Agency 

(EPA), and the US Food and Drug Administration (FDA) to test various computational techniques for predicting the toxicity of 12 

707 environmental chemicals and medicines. [24]. By identifying static and dynamic features within the chemical descriptors of 

the molecules, such as molecular weight (MW) and Van der Waals volume, a machine learning algorithm called DeepTox 

outperformed all other methods and was able to accurately predict the toxicity of a molecule based on predefined 2500 toxicophoric 

features [38]. 

5. Artificial Intelligence In Designing Drug Molecules 

5.1 Prediction of the target protein structure  

In order to treat patients effectively, choosing the appropriate target during therapeutic molecule development is essential. Several 

overexpressed proteins are involved in the development of the disease. Therefore, in order to specifically target disease, it is essential 

to predict the structure of the target protein while creating the drug molecule. AI can assist in structure-based drug development by 

predict the 3D protein structure since the design is in accordance with the chemical environment of the target protein location. This 

makes it easier to predict a compound's impact on the target and safety concerns prior to its synthesis or manufacture. [39]. By 

comparing the distances between nearby amino acids and the corresponding angles of the peptide bonds, the AI tool AlphaFold, 

which is based on DNNs, was used to predict the 3D target protein structure. With 25 out of 43 structures correctly predicted, this 

method produced excellent results. 

RNN was used to predict the protein structure in a study by AlQurashi. The author considered a recurrent geometric network (RGN), 

which consists of three stages: computation, geometry, and assessment. The basic protein sequence was encoded in this case, and 

the torsional angles for a certain residue and a partially finished backbone derived from the geometric unit upstream of this were 

then taken into account as input and gave a new backbone as output. The result from the final unit was a 3D structure. The distance-

based root mean square deviation (dRMSD) metric was used to evaluate the variance between anticipated and experimental 

structures. The RGN settings were tuned to minimize the dRMSD between the predicted and experimental structures [40]. 

AlQurashi projected that his AI approach would predict the protein structure more quickly than AlphaFold. While predicting protein 

structures with sequences comparable to those of the reference structures, AlphaFold is probably more accurate [41]. 

In a study, a nonlinear three-layered NN toolbox based on a feed-forward supervised learning and backpropagation error algorithm 

was used with MATLAB to predict the 2D structure of a protein. The input and output data sets were trained in MATLAB, and the 

NNs served as learning algorithms and performance judges. The prediction of the 2D structure was accurate to 62.72% [42]. 

5.2 Predicting Drug Protein Interaction  

Drug-protein interactions are crucial to a therapy's effectiveness. To understand a medicine's efficacy and effectiveness, predict 

how it will interact with a receptor or protein is crucial [39]. This also enables drug repurposing and avoids polypharmacology. The 

accurate prediction of ligand-protein interactions made possible by a variety of AI techniques has improved therapeutic efficacy 

[39][43]. In order to find nine new compounds and their interactions with four important targets, Wang et al. described a model 

utilizing the SVM approach that was constructed based on primary protein sequences and structural properties of small molecules 

and trained on 15 000 protein-ligand interactions [44]. 
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Yu et al. used two RF models to predict potential drug-protein interactions by combining pharmacological and chemical data and 

validating them with excellent sensitivity and specificity against well-known platforms, such as SVM. Additionally, these modes 

could forecast drug-target relationships, which could then be expanded to anticipate associations between target-disease and target-

target, accelerating the drug discovery process [45]. The Neighborhood Cleaning Rule and the Synthetic Minority Over-Sampling 

Technique were used by Xiao et al. to collect optimum data for the creation of iDrugTarget. This is a mixture of four sub-predictors 

(iDrug-GPCR, iDrug-Chl, iDrug-Enz, and iDrug-NR) for figuring out how a drug interacts with G-protein-coupled receptors 

(GPCRs), ion channels, enzymes, and nuclear receptors, in that order. Target-jackknife tests were used to compare this predictor to 

other predictors, and the former outperformed the latter in terms of consistency and prediction accuracy [46]. 

AI has also been used to help reuse already-approved drugs and avoid polypharmacology because of its potential to predict drug-

target interactions. A drug that has been repurposed is immediately qualified for Phase II clinical trials [10]. Releasing an outdated 

medication results in financial savings because doing so only costs $8.4 million as opposed to $41.3 million to release a completely 

new pharmacological entity [47]. A fresh connection between a drug and a disease can be predicted using the "guilt by association" 

strategy, which can be knowledge-based or computationally driven [48]. In networks that are computationally driven, the ML 

methodology—which uses techniques like SVM, NN, logistic regression, and DL—is widely used. Logistic regression platforms 

like PREDICT, SPACE, and other ML techniques consider drug-drug, disease-disease, target-molecule, chemical structure, and 

gene expression profiles when repurposing a medicine [49]. 

Drug-protein interactions can also foretell the likelihood of polypharmacology, or a drug's propensity to interact with many receptors 

and cause unintended side effects [51]. In order to create safer medicinal compounds, AI can build a novel molecule using the 

principles of polypharmacology [52]. Multiple substances can be linked to a variety of targets and off-targets using AI systems like 

SOM and the enormous databases that are already available. The pharmacological characteristics of medications and potential 

targets can be connected using Bayesian classifiers and SEA algorithms [50]. 

De novo medication design with AI De novo drug design has been popular in recent years as a method for creating therapeutic 

compounds. De novo drug design is being replaced by emerging DL approaches since the former has drawbacks including difficult 

synthesis routes and problematic bioactivity prediction of the novel molecule [25]. Thousands of distinct synthesis paths can be 

predicted for each of the millions of structures that can be produced using computer-aided synthesis planning [93]. 

Because of its many benefits, including online learning, optimization of previously learned data, and suggestions for potential 

synthesis routes for compounds, the use of AI in the de novo design of molecules can be advantageous to the pharmaceutical 

industry and result in quick lead design and development [53][54]. 

6. Artificial intelligence In Advancing Pharmaceutical Product Development 

The subsequent inclusion of a novel therapeutic molecule into an appropriate dosage form with the requisite delivery properties is 

necessary. The traditional method of trial and error can be replaced in this area by AI [55]. With the use of QSPR, a variety of 

computational methods can be used to overcome concerns with stability, dissolution, porosity, and other aspects of formulation 

design [56]. Decision-support tools operate through a feedback mechanism to monitor the entire process and sporadically adjust it 

[57]. They employ rule-based systems to choose the type, nature, and quantity of the excipients based on the physicochemical 

parameters of the medicine. 

Guo et al. combined expert systems (ES) and artificial neural networks (ANN) to produce a hybrid method for the production of 

piroxicam direct-filling hard gelatin capsules that adhere to the parameters of its dissolution profile. Based on the input parameters, 

the MODEL EXPERT SYSTEM (MES) generates decisions and suggestions for formulation development. Contrarily, ANN makes 

formulation development simple by using backpropagation learning to connect formulation parameters to the intended response, 

which is jointly regulated by the control module [55]. 

The influence of the powder's flow property on the die-filling and tablet compression process has been studied using a variety of 

mathematical tools, including computational fluid dynamics (CFD), discrete element modelling (DEM), and the Finite Element 

Method [58][59]. The effect of tablet geometry on its dissolution profile can also be studied using CFD [60]. The quick manufacture 

of pharmaceutical items may benefit greatly from the integration of these mathematical models with AI. 

7. Artificial Intelligence In Pharmaceutical Manufacturing 

Modern manufacturing systems are attempting to impart human knowledge to machines as a result of the growing complexity of 

production processes, as well as the growing desire for efficiency and greater product quality [61]. The pharmaceutical industry 

may profit from the use of AI in manufacturing. Utilizing the automation of many pharmaceutical activities, tools like computational 

fluid dynamics (CFD) use Reynolds-Averaged Navier-Stokes solvers technology to examine the effects of agitation and stress levels 

in various pieces of equipment (such stirred tanks). Similar systems, such big eddy simulations and direct numerical simulations, 

use sophisticated techniques to address challenging flow problems in manufacturing [58]. 

The innovative Chemputer platform aids digital automation for molecule synthesis and manufacture by including numerous 

chemical codes and working through the use of a scripting language known as Chemical Assembly [15]. With yield and purity very 

similar to manual synthesis, it has been used to successfully synthesize and produce sildenafil, diphenhydramine hydrochloride, 

and rufinamide [62]. AI technology can effectively complete the estimated granulation in granulators with capacities ranging from 

25 to 600 l [63]. Neuro-fuzzy logic and technology were used to correlate key factors with their answers. In order to anticipate the 

proportion of granulation fluid to be supplied, the necessary speed, and the diameter of the impeller in both geometrically identical 

and dissimilar granulators, they developed a polynomial equation [64]. 
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The pharmaceutical industry has used DEM extensively, for example, to investigate the segregation of powders in a binary mixture, 

the effects of varying blade speed and shape, predict the potential path of the tablets during coating, and analyze the amount of time 

that tablets spend in the spray zone [58]. In order to decrease tablet capping on the production line, ANNs and fuzzy models 

investigated the relationship between machine settings and the capping problem [65]. 

AI tools like the meta-classifier and tablet-classifier are used to control the final product's quality standard by flagging potential 

production errors in tablets [66]. A patent application demonstrates a system that employs a processor that receives patient 

information to determine the ideal drug and dose regimen for each patient, then constructs the appropriate transdermal patch in 

accordance with that information [67]. 

8. Artificial Intelligence In Quality Control and Quality Assurance 

A balance of different criteria must be achieved throughout the production of the desired product from raw materials [66]. It takes 

human intervention to maintain batch-to-batch consistency and conduct quality control testing on the products. This illustrates the 

need for AI implementation at this time and may not be the optimal strategy in every situation [58]. By implementing a "Quality by 

Design" approach, the FDA modified Current Good Manufacturing Practices (cGMP) in order to better understand the crucial 

process and precise standards that determine the ultimate quality of the pharmaceutical product [68]. 

Gams et al. created decision trees using a combination of human effort and artificial intelligence (AI) by analyzed preliminary data 

from production batches. The operators further turned them into rules and examined them in order to direct the manufacturing cycle 

going forward [66]. Goh et al. used ANN to analyze the dissolution profile of theophylline pellets, a sign of batch-to-batch 

consistency, and they found that it accurately predicted the dissolution of the tested formulation with an error of only 8% [69]. 

AI can also be used to regulate in-line manufacturing processes in order to attain the target product standard [68]. The freeze-drying 

process is monitored using an ANN-based method that employs a combination of self-adaptive evolution, local search, and 

backpropagation algorithms. This can be utilized to anticipate the temperature and desiccated-cake thickness at a future time point 

(t + t) for a specific set of operating circumstances, thereby assisting in the quality control of the final product [70]. 

An automated data input platform, such as an Electronic Lab Notebook, combined with advanced, intelligent algorithms can ensure 

product quality [71]. Furthermore, data mining and various knowledge discovery techniques in the Total Quality Management 

expert system can be employed as valuable approaches in making difficult judgments, resulting in the development of new 

technologies for intelligent quality control [72]. 

9. Artificial Intelligence In Clinical Trial Design 

Clinical trials take 6-7 years and a significant financial investment to establish the safety and efficacy of a medicinal product in 

people for a specific illness condition. However, just one out of every ten molecules that enter these trials is approved, resulting in 

a substantial loss for the industry [73]. These failures might occur as a result of poor patient selection, a lack of technological needs, 

or a lack of infrastructure. However, with the large amount of digital medical data available, these failures can be decreased by the 

use of AI [74]. 

Enrolling participants consumes one-third of the clinical study timeline. The enrollment of suitable patients ensures the success of 

a clinical study, which otherwise results in 86% of failure cases [75]. AI can help in the selection of a specific diseased population 

for enrollment in Phase II and III clinical trials by applying patient-specific genome-exposome profile analysis, which can aid in 

the early prediction of possible therapeutic targets in the patients chosen [10][74]. Preclinical molecule discovery and prediction of 

lead compounds prior to the start of clinical trials using other aspects of AI, such as predictive ML and other reasoning techniques, 

aid in the early prediction of lead molecules that would pass clinical trials with consideration of the selected patient population [74]. 

Drop out of patients from clinical trials accounts for 30% of clinical trial failure, resulting in additional recruiting requirements for 

the trial's completion, resulting in a waste of time and money. This can be avoided by closely monitoring the patients and assisting 

them in adhering to the clinical trial procedure [75]. AiCure developed mobile software to track regular medication intake by 

patients with schizophrenia in a Phase II trial, which boosted patient adherence by 25%, assuring the clinical trial's successful 

completion [10]. 

10.  intelligence in Pharmaceutical Product Management 

10.1 Artificial Intelligence In Market Positioning 

Market positioning is the process of establishing a product's identity in the market in order to persuade customers to acquire it, 

making it a key component in almost all business strategies for enterprises to build their own distinct identity [76][77]. This strategy 

was employed in the promotion of the pioneer brand Viagra, which was marketed not only for the treatment of erectile dysfunction 

in males, but also for other disorders impacting quality of life [78]. 

Companies can now achieve natural brand recognition in the public realm with the use of technology and e-commerce as a platform. 

Companies use search engines as one of the technology platforms to get a prominent place in online marketing and aid in product 

positioning, as affirmed by the Internet Advertising Bureau. Companies are constantly attempting to rank their websites higher than 

those of other companies in order to gain attention for their brand in a short amount of time [79]. 
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Other techniques, such as statistical analysis methods and particle swarm optimization algorithms (introduced by Eberhart and 

Kennedy in 1995) used in conjunction with NNs, produced a more accurate picture of markets. They can assist in determining the 

product's marketing strategy based on accurate consumer demand prediction [80]. 

10.2 Artificial Intelligence Market Prediction and Analysis 

A company's success is determined by the constant expansion and growth of its business. Despite having access to large funding, 

R&D production in the pharmaceutical business is declining due to companies' failure to adopt new marketing technologies [81]. 

The 'Fourth Industrial Revolution' in digital technologies is assisting innovative digitalized marketing through a multicriteria 

decision-making approach, which collects and analyses statistical and mathematical data and implements human inferences to make 

AI-based decision-making models explore new marketing methodology [82]. 

AI also aided in a full examination of a product's core requirements from the customer's perspective, as well as analyzing market 

demand, which aids in decision-making using prediction tools. It can also forecast sales and conduct market research. AI-based 

software engages customers and raises physician awareness by providing adverts that connect them to the product site with a single 

click [83]. Furthermore, these strategies employ natural language processing tools to examine keywords entered by clients and 

associate them with the likelihood of purchasing the goods [84][85]. 

Several business-to-business (B2B) companies have introduced self-service solutions that enable free browsing of health items, 

which can be easily located by providing specifications, placing orders, and tracking their shipping. Pharmaceutical companies are 

also launching online programmers such as 1 mg, Medline, Netmeds, and Ask Apollo to meet patients' unmet requirements [82]. 

Market prediction is also important for various pharmaceutical distribution organizations that can apply AI in the sector, such as 

'Business clever Smart Sales Prediction Analysis', which employs a combination of time series forecasting and real-time application. 

This enables pharmaceutical companies to forecast product sales in advance, avoiding the expenditures of excess stock or client 

loss due to shortages [86]. 

11. Artificial Intelligence Based Advance Application 

11.1 Artificial Intelligence Based Nanorobots for Drug Delivery 

Nanorobots are primarily composed of integrated circuits, sensors, power supplies, and secure data backup, all of which are 

maintained using computational technologies such as AI [87][88]. They are engineered to avoid collisions, identify targets, detect 

and attach, and then excrete from the body. Nano/microrobot advancements allow them to go to the desired region based on 

physiological parameters such as pH, boosting efficacy and lowering systemic adverse effects [88]. The development of implantable 

nanorobots for controlled drug and gene delivery necessitates consideration of characteristics such as dose modification, sustained 

release, and control release, and drug release necessitates automation controlled by AI tools such as NNs, fuzzy logic, and integrators 

[89]. Microchip implants are utilized for both programmed release and detecting the implant's position in the body. 

11.2 Artificial Intelligence Emergence in Nanomedicine 

Nanomedicines combine nanotechnology and medicine to diagnose, treat, and monitor complicated diseases such as HIV, cancer, 

malaria, asthma, and inflammatory diseases. Nanoparticle-modified drug delivery has become essential in the field of therapeutics 

and diagnostics in recent years due to improved efficacy and therapy [90][91]. Many formulation development difficulties could be 

solved by combining nanotechnology and AI [92]. 

A methotrexate nanosuspension was computationally created by evaluating the energy released by the drug molecules' interaction 

and monitoring the variables that could lead to formulation aggregation [56]. Coarse-grained simulation, in conjunction with 

chemical calculations, can help determine drug-dendrimer interactions and assess drug encapsulation within the dendrimer. 

Furthermore, tools such as LAMMPS and GROMACS 4 can be utilized to investigate the effect of surface chemistry on nanoparticle 

internalization into cells [56]. 

AI aided in the development of silicasomes, which are composed of iRGD, a tumor-penetrating peptide, and irinotecan-loaded 

multifunctional mesoporous silica nanoparticles. This boosted silicasomes uptake three to fourfold because iRGD enhances 

silicasomes transcytosis, resulting in improved treatment outcome and overall survival [91]. 

11.3 Pharmaceutical Market of Artificial Intelligence 

To reduce the monetary cost and chances of failures that accompany VS, pharmaceutical businesses are shifting towards AI. The 

AI market grew from US$200 million in 2015 to US$700 million in 2018, and it is predicted to grow to $5 billion by 2024 [94]. AI 

is expected to disrupt the pharmaceutical and medical sectors, with a 40% estimated rise from 2017 to 2024. Various pharmaceutical 

corporations have made and continue to make investments in AI, as well as cooperated with AI companies to build critical healthcare 

technologies. DeepMind Technologies, a Google company, collaborated with the Royal Free London NHS Foundation Trust to 

help people with acute renal injury.  Major pharmaceutical companies and AI players are detailed in Figure 3 [10]. 
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figure no 3 : leading pharmaceutical companies and their collaboration with artificial intelligence (AI) groups working in 

oncology, cardiovascular disease, and central nervous system problems. 

Conclusion 

Drug design and development will continue to be an early user of new and growing experimental and computational tools. Among 

the challenges is deciding whether to use these technologies to improve the existing pipeline and processes or to reengineer the 

processes in light of these technologies. Big data, digital healthcare, remote monitoring, and genomics will increase the need to 

investigate how computational and reasoning approaches might be used to improve the process in terms of clinical significance as 

well as cost reduction. Artificial intelligence methods hold enormous potential for achieving these aims, but their success is 

dependent on matching the correct question to the proper technology. 
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